
HERKANSINGSTENTAMEN WISB 212
Analyse in Meer Variabelen

29–08–2006 14–17 uur

• Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzij-
den.

• De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van
elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten
daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien
het u niet lukt een bepaald onderdeel te maken en ga gewoon door.

• Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden ge-
bruikt.

• De antwoorden mogen uiteraard in het Nederlands worden gegeven, ook al zijn de vraagstukken
in het Engels geformuleerd.

• De drie vraagstukken tellen evenzwaar.
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Exercise 0.1 (Diffeomorphism from plane onto hyperbolic domain). We want to parametrize the
points belonging to the unbounded open set

U = {x ∈ R2 | |x1x2| < 1 }

by points in all of R2. Given x ∈ U , note there exists y ∈ R2 such that

x2
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2
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y2
1y

2
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1 + y2
1y
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2

.

This suggests to consider

Ψ : R2 → R2 given by Ψ(y) = f+(y) y where f±(y) =
1

4
√

1± y2
1y

2
2

.

(i) Show that Ψ : R2 → U is a C∞ diffeomorphism by computing that its inverse Φ : U → R2

satisfies Φ(x) = f−(x) x.

(ii) Prove that 2yj Djf+(y) = −y2
1y

2
2 f+(y)5, for 1 ≤ j ≤ 2. Use this to deduce

DΨ(y) =
f+(y)5
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−y1y
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)
and det DΨ(y) = f+(y)6.

(iii) Given y ∈ R2, consider the curves s 7→ Ψ(s, y2) and t 7→ Ψ(y1, t) in U . Demonstrate that the
curves are C∞ submanifolds in U of dimension 1. These two submanifolds obviously intersect
at the point Ψ(y); show that it is the only point of intersection.

(iv) Verify that the submanifolds from part (iii) are perpendicular at Ψ(y) if and only if Ψ(y) belongs
to the intersection of one of the coordinate axes with U .
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Exercise 0.2 (Averaging norms of vectors over a set). For a bounded C1 submanifold V in Rn of
dimension d, define

A(V ) =
∫

V
‖x‖ ddx. Then

A(V )
vold(V )

represents the average norm of a vector belonging to the set V .

(i) Consider B2 = {x ∈ R2 | ‖x‖ < 1 } and compute A(B2).

(ii) Set � = {x ∈ R2 | 0 < xj < 1, 1 ≤ j ≤ 2 } and show

A( � ) =
1
3

√
2 +

1
3

log(1 +
√

2) = 0.765 195 · · · .

Hint. Introduce polar coordinates (r, α) in � . Next, one may apply without proof∫
1

cos3 α
dα =

∫
1

(1− sin2 α)2
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+

1
2
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2
)
.

Furthermore, use that cos2 π
8 − sin2 π

8 = cos π
4 = 1

2

√
2 implies{ sin
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8
=
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√
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√
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8
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=
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√
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√
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(iii) Evaluate A(V ) where

V = im(φ) with φ : ]−1, 1 [ → R3 given by φ(t) = (cos t, sin t, t).

Hint. In the computation of the integral, set t = tan α.

Background. The value of the integral in part (ii) occurs, for instance, in the calculation of the expected
distance between two random points on different sides of the unit square.

Exercise 0.3 (Vector field on open set is uniquely determined by its curl, divergence and restriction
to the boundary of its normal component). We call an open set Ω ⊂ R3 admissible if it satisfies the
conditions of the Theorem on Integration of a Total Derivative. Let g be a C2 function on an open
neighborhood of an admissible set Ω and denote by f : Ω → R3 the gradient vector field associated to
g. Suppose

div f = 0 on Ω and 〈 f, ν 〉 = 0 on ∂Ω.

Here ν(y) denotes, as usual, the outer normal to ∂Ω at y ∈ ∂Ω.

(i) Prove curl f = 0 on Ω.

(ii) Using Green’s first identity show that f = 0 on Ω.

Next, consider the special case of

g : R3 \ {0} → R with g(x) = − 1
‖x‖

and set f(x) = grad g(x) =
1

‖x‖3
x.

(iii) Verify div f = 0 on R3 \ {0}.

(iv) Deduce from the preceding two parts that there exists no admissible open set Ω ⊂ R3 \ {0}
having the property that Ry is contained in the tangent space of ∂Ω at y, for all y ∈ ∂Ω.

(v) Can you give an example of an admissible set open Ω ⊂ R3 \{0} having the property in part (iv)
for “more or less half” of the points y ∈ ∂Ω?

Background. The conditions div f and 〈 f, ν 〉 = 0 on the vector field f assert that it is incompressible
and that it has no flux through the boundary of Ω. Loosely speaking, these conditions force f to be the
vector field of a circulation within Ω, but that is ruled out by the condition that f be irrotational.
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Solution of Exercise ??

(i) Given x ∈ U , consider the equation x = Ψ(y) for y ∈ R2. If a solution y exists, then sgn(xj) =
sgn(yj), for 1 ≤ j ≤ 2. Obviously, y = 0 is the only solution of 0 = Ψ(y). So we may assume
that either x1 or x2 6= 0, say x2 6= 0. Then y2 6= 0 and x1

x2
= y1

y2
, in other words, x1y2 = x2y1.

Raising the identity xj = Ψj(y) to the fourth power and taking the indices modulo 2, we obtain

x4
j =

y4
j

1 + y2
1y

2
2

, so y4
j = x4

j+(xjyj)2(xjyj+1)2 = x4
j+(xjyj)2(xj+1yj)2 = x4

j+(x2
1x

2
2)y

4
j .

In other words,
(1− x2

1x
2
2)y

4
j = x4

j and so yj = f−(x) xj ,

where f−(x) is well-defined because x ∈ U . This proves that there exists a unique solution
y ∈ R2. In other words, the inverse Φ of Ψ : R2 → U is as given and Ψ is a bijection with an
inverse of class C∞.

(ii) We have

Djf+(y) = Dj(1 + y2
1y

2
2)
− 1

4 = −1
4

(1 + y2
1y

2
2)
− 5

4
2y2

1y
2
2

yj
= −y2

1y
2
2

2yj
f+(y)5.

Hence the matrix for DΨ(y) follows from, for 1 ≤ i, j ≤ 2,

DjΨi(y) = δij f+(y) + Djf+(y) yi =
f+(y)5

2

(
2δij (1 + y2

1y
2
2)−

yiy
2
1y

2
2

yj

)
.

This implies

det DΨ(y) =
f+(y)10

4
(4 + 4y2

1y
2
2) = f+(y)6.

(iii) All assertions are a direct consequence of the fact that Ψ is a C∞ diffeomorphism.

(iv) The curves intersect orthogonally at Ψ(y) if and only if the cosine of the angle of intersection is
equal to zero. Modulo a strictly positive factor, this cosine is given by

〈D1Ψ(y), D2Ψ(y) 〉 = −f+(y)10

4
(2 + y2

1y
2
2)‖y‖2 y1y2.

Hence it equals zero if and only if y1y2 = 0, and this is the case if and only if Ψ(y) belongs to
one of the coordinate axes.

Solution of Exercise ??

(i) Using polar coordinate (r, α) in B2 one finds∫
B2

‖x‖ dx =
∫ π

−π

∫ 1

0
r2 dr dα = 2π

1
3

=
2π

3
.

(ii) Introduction of polar coordinates leads to (compare with Exercise 6.15)∫
�
‖x‖ dx = 2

∫ π
4

0

∫ 1
cos α

0
r2 dr dα =

2
3

∫ π
4

0

1
cos3 α

dα.
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Now∫ π
4

0

1
cos3 α

dα =
1
2

√
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1
2
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2√
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√
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=
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√
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The penultimate equality is obtained by multiplying the numerator and denominator of the argu-
ment of the log by

√
2 +

√
2.

(iii) One obtains, for −1 < t < 1,

‖Dφ(t)‖ = ‖(− sin t, cos t, 1)‖ =
√

2 and ‖φ(t)‖ =
√

1 + t2 =
√

1 + tan2 α =
1

cos α
.

Here −π
4 < α < π

4 , because tan π
4 = 1. Accordingly dt

dα = d tan α
dα = 1

cos2 α
implies∫

V
‖x‖ d1x =

∫ π
4

−π
4

‖φ(t)‖
√

2 dt = 2
√

2
∫ π

4

0

1
cos3 α

dα = 2 +
√

2 log(1 +
√

2).

Solution of Exercise ??

(i) For every x ∈ Ω, the matrix of Df(x) ∈ End(R3) is given by (DjDig(x))1≤i,j≤3, which is
symmetric on account of Theorem 2.7.2. Therefore Af(x) = 0, and this leads to curl f = 0 on
Ω.

(ii) Green’s first identity implies∫
Ω
(g ∆g)(x) dx +

∫
Ω
‖ grad g(x)‖2 dx =

∫
∂Ω

(
g

∂g

∂ν

)
(y) d1y.

By our assumptions on f we have ∆g = div grad g = div f = 0 on Ω and ∂g
∂ν = 〈 grad g, ν 〉 =

〈 f, ν 〉 = 0 on ∂Ω. It follows that
∫
Ω ‖ grad g(x)‖2 dx = 0. Since the integrand is a nonnegative

continuous function on Ω, it follows that f = grad g = 0 on Ω.

(iii) See Example 7.8.4 in the case of n = 3.

(iv) Note that the vector f(y) is proportional to y, for all y ∈ ∂Ω. Now argue by contradiction.
Indeed, suppose Ω is a set having the properties described in this part. Then the outer normal
ν(y) is perpendicular to y, and so to f(y), for y ∈ ∂Ω; but this means 〈 f, ν 〉 = 0 on ∂Ω. Part
(iii) then implies that the conclusion of part (ii) holds; in other words, f = 0 on Ω. This is a
contradiction because f is nowhere zero on Ω.
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